
SCALING GREAT VR
Nat Brown • natb@valvesoftware.com



Roadmap
Scaling Great VR

What Is Scaling

What’s Different About VR Scaling

Scaling Tools & Resources

Why Bother Scaling

“Great” VR Content

Conclusions / Q&A



WHAT IS SCALING?





Types of Scaling
Scaling Great VR

1. Manual User Tuning



Types of Scaling
Scaling Great VR

1. Manual User Tuning

2. One-Time Auto-Tuning



Types of Scaling
Scaling Great VR

1. Manual User Tuning

2. One-Time Auto-Tuning

3. Adaptive Scaling



Graphics Scaling



Graphics Scaling



Graphics Scaling



Graphics Scaling







Input Scaling







WHAT’S DIFFERENT ABOUT 
VR SCALING?



VR Scaling

VR Adds Tough Constraints

• You must maintain 90Hz

• Reprojection techniques are a 
safety net for occaisional misses, 
not a crutch



VR Scaling

VR Adds Tough Constraints

• You must maintain 90Hz

• Players have extreme camera control



VR Scaling

VR Adds Tough Constraints

• You must maintain 90Hz

• Players have extreme camera control



VR Scaling

VR Adds Tough Constraints

• You must maintain 90Hz

• Players have extreme camera control



VR Scaling

VR Adds Tough Constraints

• You must maintain 90Hz

• Players have extreme camera 
control

• Reconfigurable worlds turn 
performance tuning on its head



VR Scaling

VR Adds Tough Constraints

• You must maintain 90Hz

• Players have extreme camera 
control

• Reconfigurable worlds make turn 
performance tuning on its head

• It’s early days in VR



SCALING TOOLS & 
RESOURCES



Input Tools & Resources

Abstracting Input Through OpenVR

• Mapping Input Events

• Identifying Input Surfaces/Sources

• Great example from driver perspective:

https://github.com/ValveSoftware/driver_hydra

• Example from application perspective:

SteamVR_RenderModel.cs in the Unity plugin



IVRSystem

::GetControllerState

::GetControllerStateWithPose



IVRSystem



IVRRenderModel

::GetComponentCount

::GetComponentName

::GetComponentButtonMask

::GetComponentState



Graphics Tools & Resources

Low-Level Background:

• http://www.gdcvault.com/play/1021771/Advanced-VR-2015

• http://www.gdcvault.com/play/1023522/Advanced-VR-2016

• Dynamic Resolution and dynamic MSAA



Adaptive Quality

Stated simply: “Adaptive Quality dynamically changes 
rendering settings to maintain framerate while maximizing GPU 
utilization”



Adaptive Quality

Stated simply: “Adaptive Quality dynamically changes 
rendering settings to maintain framerate while maximizing GPU 
utilization”

• Goal #1: Reduce the chances of dropping frames and 
reprojecting

• Goal #2: Increase quality when there are idle GPU cycles



Adaptive Quality

Stated simply: “Adaptive Quality dynamically changes 
rendering settings to maintain framerate while maximizing GPU 
utilization”

• Goal #1: Reduce the chances of dropping frames and 
reprojecting

• Goal #2: Increase quality when there are idle GPU cycles

Example is the Aperture Robot Repair VR demo running at 
target framerate on an NVIDIA 680 using two different 
methods



Adaptive Quality Benefits

• Lower GPU min spec for your application

• Increased art asset limits – Artists can now make 
the tradeoff between slightly lower fidelity 
rendering for higher poly assets or more complex 
materials

• Don’t need to rely on reprojection to maintain 
framerate

• Happy Fallout: Our apps look better on all 
hardware



What Settings Are Changed?

What you can’t adjust:

• Can’t toggle visual features like specular

• Can’t toggle shadows

What you can adjust:

• Rendering resolution/viewport (aka Dynamic Resolution)

• MSAA level or anti-aliasing algorithm

• Fixed Foveated Rendering

• Radial Density Masking

• etc.



ADAPTIVE QUALITY 
EXAMPLE

Quality 

Level

MSAA Resolutio

n Scale

Radial 

Density 

Masking

Reprojection 

Hint

Render 

Resolution

+6 8x 1.4 - - 2116x2352

+5 8x 1.3 - - 1965x2184

+4 8x 1.2 - - 1814x2016

+3 8x 1.1 - - 1663x1848

+2 8x 1.0 - - 1512x1680

+1 4x 1.1 - - 1663x1848

0 4x 1.0 - - 1512x1680

-1 4x 0.9 - - 1360x1512

-2 4x 0.81 - - 1224x1360

-3 4x 0.81 - Yes 1224x1360

-3 4x 0.73 - - 1102x1224

-4 4x 0.65 On - 992x1102

35



36



Measuring GPU Workload

• You GPU workload isn’t always solid, might have bubbles

• VR system GPU workload is variable: lens distortion, chromatic 
aberration, chaperone bounds, overlays, etc.

• Get timings from the VR system, not your application. OpenVR
provides a total GPU timer that accounts for all GPU work



GPU Timers - Latency

• Your GPU queries are always going to be 1 frame old

• In Source2 we also have 1 or 2 frames in the queue that can’t be 
modified – you probably will, too



Implementation Details – 3 Rules

Goal: Maintain 70%-90% GPU utilization

High = 90% of frame (10.0ms)

• Decrease aggressively: If the last frame finished rendering after the 
90% threshold of the GPU frame, drop 2 levels, wait 2 frames



Implementation Details – 3 Rules

Goal: Maintain 70%-90% GPU utilization

High = 90% of frame (10.0ms)

• Decrease aggressively: If the last frame finished rendering after the 
90% threshold of the GPU frame, drop 2 levels, wait 2 frames

Low = 70% of frame (7.8ms)

• Increase conservatively: If the last 3 frames finished below the 70% 
threshold of the GPU frame, increase 1 level, wait 2 frames



Implementation Details – 3 Rules

Goal: Maintain 70%-90% GPU utilization

High = 90% of frame (10.0ms)

• Decrease aggressively: If the last frame finished rendering after the 
90% threshold of the GPU frame, drop 2 levels, wait 2 frames

Low = 70% of frame (7.8ms)

• Increase conservatively: If the last 3 frames finished below the 70% 
threshold of the GPU frame, increase 1 level, wait 2 frames

Prediction = 85% of frame (9.4ms)

• Use linear extrapolation from last two frames to predict rapid 
increases

• If last frame is above the 85% threshold and the linearly extrapolated 
next frame is above the high threshold (90%), drop 2 levels, wait 2 



10% Idle Rule

• The high threshold of 90% leaves 10% of the GPU idle for 
other processes almost every frame. This is a good thing.

• You need to share the GPU with other processes, even 
Windows desktop needs a slice of the GPU every few VR 
frames.

• Last year we recommended a GPU budget of 11.11ms but 
now we recommend less - 10.0ms per frame, so you almost 
never starve other processes of GPU cycles.



Graphics Tools & Resources

Medium-Level Background:

• https://developer.valvesoftware.com/wiki/SteamVR/Frame_Timing

• https://developer.valvesoftware.com/wiki/SteamVR/Installing_GPU
View

• IVRCompositor::GetFrameTiming && ::GetFrameTimeRemaining











Graphics

• Unity - The Lab Renderer

https://www.assetstore.unity3d.com/en/#!/content/63141

• Implements a single-pass forward renderer with MSAA, dynamic resolution, 
custom shaders / materials for shadows, GPU flushing

• We’ve fixed a few bugs since it initially launched, please reach out if you hit 
problems

Scaling Tools & Resources



WHY BOTHER SCALING



Why Bother Scaling

• Broaden Your Reach At Launch – You Choose Your Minimum Spec



Why Bother Scaling

• Broaden Your Reach At Launch – You Choose Your Minimum Spec

• Longer Reach & Appeal Over Time



Why Bother Scaling

• Broaden Your Reach At Launch – You Choose Your Minimum Spec

• Longer Reach & Appeal Over Time

• OpenVR – Good For The Whole VR Ecosystem



What Makes Great VR?



















Types of Scaling
Scaling Great VR

1. Manual (User) Tuning

2. Automatic One-Time Tuning

3. Adaptive Scaling

4. Experience Scaling?



Conclusions

Diverse hardware is good

Embrace the medium – room-scale, tracked controllers

Consistency of interaction trumps perfect graphics

Use early-access to refine and polish

Ask yourself: Is there polish I could automatically or adaptively scale?



Q & A


